skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Duan, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Please see uploaded extended abstract. 
    more » « less
  2. Abstract Our recent work on linear and affine dynamical systems has laid out a general framework for inferring the parameters of a differential equation model from a discrete set of data points collected from a system being modeled. It introduced a new class of inverse problems where qualitative information about the parameters and the associated dynamics of the system is determined for regions of the data space, rather than just for isolated experiments. Rigorous mathematical results have justified this approach and have identified common features that arise for certain classes of integrable models. In this work we present a thorough numerical investigation that shows that several of these core features extend to a paradigmatic linear-in-parameters model, the Lotka–Volterra (LV) system, which we consider in the conservative case as well as under the addition of terms that perturb the system away from this regime. A central construct for this analysis is a concise representation of parameter and dynamical features in the data space that we call thePn-diagram, which is particularly useful for visualization of the qualitative dependence of the system dynamics on data for low-dimensional (smalln) systems. Our work also exposes some new properties related to non-uniqueness that arise for these LV systems, with non-uniqueness manifesting as a multi-layered structure in the associatedP2-diagrams. 
    more » « less